
TOWARDS SAMPLE PATH ESTIMATES FOR FAST-SLOW STOCHASTIC

PARTIAL DIFFERENTIAL EQUATIONS

MANUEL V. GNANN, CHRISTIAN KUEHN, AND ANNE PEIN

Abstract. Estimates for sample paths of fast-slow stochastic ordinary differential equations (SODEs)
have become a key mathematical tool relevant for theory and applications. In particular, there have been
breakthroughs by Berglund and Gentz to prove sharp exponential error estimates. In this paper, we take
the first steps in order to generalize this theory to fast-slow stochastic partial differential equations
(SPDEs). In a simplified setting with a natural decomposition into low- and high-frequency modes, we
demonstrate that for a short time period the probability for the corresponding sample path to leave a
neighbourhood around the stable slow manifold of the system is exponentially small as well.

1. Introduction

A general fast-slow SODE system has the form

(1.1)

{
du = 1

εf(u, v, ε) ds+
σf√
ε
F (u, v, ε) dW,

dv = g(u, v, ε) ds+ σgG(u, v, ε) dW,

where (u, v) = (u(s), v(s)) ∈ R
m+n, 0 < ε, σf , σg ≪ 1 are small parameters, W = W (s) is a

k-dimensional vector of independent identically distributed (iid) Brownian motions, and the maps
f, g, F,G are assumed to be sufficiently smooth. Furthermore, all maps have suitable domains and
ranges, e.g., F : Rm+n × R → R

m×k is matrix-valued. The parameter ε controls the time scale sepa-
ration between the fast u variables and the slow v variables, while the parameters σf and σg regulate
the noise level. SODEs of the form (1.1) appear in many modelling contexts. Examples are neuro-
science [21, 26], climate science [1, 22], and ecology [24, 25], among many other areas. Without noise
(σf = 0 = σg), fast-slow ODEs have appeared in virtually all branches of science and engineering; we
refer to [17] for a detailed overview and references.

Within this paper, we focus on the case where the critical set of the deterministic system, i.e.

(1.2) C0 := {(u, v) ∈ R
m+n : f(u, v, 0) = 0},

is a normally hyperbolic attracting manifold. Thus by Fenichel’s Theorem [11, 16, 17] C0 perturbs to
a locally invariant slow manifold Cε that is normally hyperbolic attracting as well. In this setting and
under sufficiently small noise, a typical sample path of (1.1) starting near Cε is going to fluctuate around
Cε and also slowly drifts according to a stochastic perturbation of the slow subsystem, see Figure 1. A
fundamental theory to estimate the probability of such a sample path to stay near the slow manifold
was developed by Berglund and Gentz [3, 4]. Note that their theory has extensions to bifurcations [2]
and global dynamical noisy fast-slow patterns [6].

Date: August 30, 2018.
2010 Mathematics Subject Classification. 60H15,35R60,37Hxx.
Key words and phrases. Fast-slow system, stochastic partial differential equation, sample path, covariance

neighbourhood.
MVG received funding from the Deutsche Forschungsgemeinschaft (project number 334362478). CK and AP were

supported by a Lichtenberg-Professorship awarded to CK. CK also acknowledges partial support via the DFG-DACH
grant “Analysis of PDE with Cross-Diffusion and Stochastic Terms”. The authors would like to thank Dirk Blömker, Nils
Berglund and Alexandra Neamtu for interesting discussions regarding fast-slow SPDEs and the reviewers for their helpful
comments.

1



2 MANUEL V. GNANN, CHRISTIAN KUEHN, AND ANNE PEIN

v

u1

u2

Figure 1. Sketch of a sample path (red) inside an ellipsoidal neighbourhood Er (grey)
for the finite-dimensional SODE setting with two fast and one slow variable. In the
SPDE case, we are going to view the u-direction as infinite-dimensional.

It would be very desirable to have a generalization of this theory to fast-slow SPDEs. Examples
of such systems arising in applications are the FitzHugh-Nagumo SPDE [7, 13], slowly-driven ampli-
tude/modulation equations [8,14], and degenerate controlled SPDEs [19,20]. There are certainly many
other important examples as most PDEs arising in applications have parameters, which quite often are
slow variables, and those PDEs should frequently have noise terms, e.g. due to finite-size effects or
external forces. An important class of such equations can be formulated as

(1.3)

{
du = [Au+ f(u, v, ε)] dt+ σ dWQ,
dv = εg(u, v, ε) dt,

where A is a differential operator so that S(t) := etA is a strongly continuous semigroup on a given
(spatial) function space H and WQ is a Q-Wiener process. One natural setting occurs when H is a
Hilbert space and we view (1.3) as an evolution equation on H. By requiring f(0, v, ε) = 0 the analogue
of C0 and Cε is just the zero solution {u ≡ 0}. Then one is charged with providing estimates on the
slowly-drifting process (starting say on {u ≡ 0}) to stay in a suitable neighbourhood of {≡ 0} inside H.

In this paper, as a first step towards the case (1.3), we consider the situation where the system is
reduced to a scalar linear non-autonomous SPDE. This is already the theoretical analogue to the key
step in the SODE theory of Berglund/Gentz; see the linearized parts of the estimates in [4, Sec. 5.1].

We investigate the SPDE on a bounded interval so that the solution can be expressed by a Fourier
series and the SPDE is naturally reformulated as an infinite-dimensional system of SODEs. The linear
reaction term consists of a time-dependent coefficient and a non-local operator which generates linear
couplings between the first k∗ − 1 modes. Thus, it is natural to split the system into two parts: the
first part consisting of the first k∗ − 1 coupled low-frequency modes and the second part consisting of
infinitely many decoupled high-frequency modes. Both components are estimated by Bernstein-type
inequalities and the limiting process in the second part is approached by an iteration argument. The
probability to exit a certain neighbourhood around a stable slow manifold of the system (in our case
the steady state u ≡ 0) can then be estimated by convolving the corresponding probabilities for finite
and high frequencies. Systems of the form presented here arise not only directly in numerical spectral
Galerkin methods for SPDEs [18] but also in the context of inertial manifolds defined via a finite number
of effective Fourier modes; see [27] for the classical deterministic setting.

The remaining part of this paper is structured as follows: In Section 2 we precisely define the setting
of the SPDE case and we clarify the approach using finite-dimensional approximations. Our main result
and technical contributions are contained in Section 3. Lastly, we provide a summary and an outlook
on possible generalizations in Section 4.

2. SPDE Setting & Galerkin Approximation

Let us begin by describing the setting at hand in some detail. For a thorough presentation of mild
solution theory for SPDEs we refer the reader to [10].
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2.1. SPDE setting. We consider the Hilbert space L2([0, L]) for some L > 0 and a probability space
(Ω,F ,P). Let Q : L2([0, L]) → L2([0, L]) be a symmetric, non-negative, bounded, linear operator of
trace class and let WQ be a L2([0, L])-valued Q-Wiener process on (Ω,F ,P). Let {ek}k denote the
eigenfunctions of the covariance operator Q with associated non-negative eigenvalues {λk}k, so that

(2.1) Qek = λkek for all k.

The eigenfunctions form a complete orthonormal system in L2([0, L]) and by assumption we have
∑

k λk <∞. Now, for any s ∈ [0, t] the random variable WQ(s) can be represented as

(2.2) WQ(s) =

∞∑

k=1

√

λkWk(s)ek,

where {Wk}k is a sequence of standard R-valued independent Brownian motions on (Ω,F ,P). The
series is convergent in L2(Ω,F ,P;L2([0, L])) (cf. [10, Prop. 4.3]).

As mentioned in the introduction, we will focus on a special, yet crucial, case of equation (1.3)

throughout the paper. In particular, we choose A = ∂2

∂x2 , g ≡ 1 and f(u, s, ε) = a(s)u(s) +Bu(s), with
a : R → R being bounded and measurable and B being a non-local operator as defined below. After
changing to the slow time scale, we end up with the following equation

(2.3) du(s) =
1

ε

[
∂2

∂x2
u(s) + a(s)u(s) +Bu(s)

]

ds+
σ√
ε
dWQ(s),

which is interpreted as a linear evolution equation in L2([0, L]). We equip the equation with homoge-
neous Dirichlet boundary conditions, i.e, we have u(s, 0) = u(s, L) = 0 for all s ∈ [0, t]. Furthermore,
we assume as initial condition u(0, x) = 0 for all x ∈ [0, L].

The domain of the operator A = ∂2

∂x2 in L2([0, L]) under homogeneous Dirichlet boundary conditions

is given byD(A) = H2([0, L])∩H1
0 ([0, L]). D(A) is dense in L2([0, L]) and A has a complete orthonormal

set of eigenfunctions

{φk}k =

{

x 7→
√

2

L
sin

(
kπ

L
x

)}

k

in L2([0, L]) with associated eigenvalues µk = −k2π2

L2 . In particular, A generates a strongly continuous

semigroup S(s) = esA in L2([0, L]), namely the heat semigroup. B is defined via its action on the
eigenfunctions {φk}k in the following way

(2.4) Bφk(x) =

{∑k∗−1
ℓ=1 bℓkφℓ(x) , k ≤ k∗ − 1,

0 , k ≥ k∗.

The operator L(s) := 1
ε

[
∂2

∂x2 + a(s) +B
]

generates a strongly continuous evolution family (R(s, r))0≤r≤s≤t

and (2.3) admits a unique mild solution in L2([0, L]) (cf. [28], where a cylindrical Q-Wiener process is
considered)

(2.5) u(s) =
σ√
ε

∫ s

0
R(s, r) dWQ(r).

2.2. Spectral Galerkin approximation. In this subsection, we derive a finite-dimensional approxi-
mation of (2.3) by using a spectral Galerkin approximation. We are looking for an expansion in terms
of the eigenfunctions of the linear operator A and for simplicity we assume φk = ek for all k. For m ≥ k∗
consider the m-dimensional space Vm := span{φ1, ..., φm} and define the orthogonal projection operator
Pm : L2([0, L]) → Vm by

(2.6) Pmh =
m∑

k=1

ĥkφk, ĥk =

∫ L

0
φk(x)h(x) dx for all h ∈ L2([0, L]).
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Now, let um(s) be the m-dimensional Galerkin approximation of (2.5), i.e., the solution of the projected
equation

(2.7) dum =
1

ε
Pm

[
∂2

∂x2
um + a(s)um +Bum

]

ds+
σ√
ε
Pm dWQ.

Then, under suitable assumptions, um(s) converges in the L∞-topology to u(s) as m → ∞ (see [9] for
the details regarding this convergence). We further calculate

Pmu(s) =

m∑

k=1

ûk(s)φk, ûk(s) :=

∫ L

0
φk(x)u(s, x) dx,

and using integration by parts
∫ L

0
φk(x)

∂2

∂x2
u(s, x) dx =

∫ L

0

∂2

∂x2
φk(x)u(s, x) dx = µk

∫ L

0
φk(x)u(s, x) dx = µkûk(s),

so that we obtain

Pm
∂2

∂x2
u(s) =

m∑

k=1

µkûk(s)φk.

Similarly, we also project the noise term

PmW
Q(s) =

m∑

k=1

√

λkWk(s)φk,

since one can simply calculate
∫ L

0
φk(x)

∞∑

j=1

√

λjWj(s)φj(x) dx =
∞∑

j=1

√

λjWj(s)

∫ L

0
φk(x)φj(x) dx =

√

λkWk(s).

Furthermore, the non-autonomous part of the drift term gives

Pma(s)u(s) =

m∑

k=1

a(s)ûk(s)φk,

and

PmBu(s) =

k∗−1∑

ℓ=1

k∗−1∑

k=1

bℓkûk(s)φℓ

In summary, (2.7) is equivalent to the following finite-dimensional system of SODEs

(2.8)






dU1(s)

dU2(s)




 =

1

ε






J1(s) 0

0 J2(s)






︸ ︷︷ ︸

=:J(s)






U1(s)

U2(s)






︸ ︷︷ ︸

=:Um(s)

ds+
σ√
ε






F1 0

0 F2











dW1(s)

dW2(s)




 ,

where

(2.9) J1(s) :=








µ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 µk∗−1








+ a(s) idk∗−1 +









b11 b12 . . . b1k∗−1

b21
. . .

. . .
...

...
. . .

. . . bk∗−2
k∗−1

bk∗−1
1 . . . bk∗−1

k∗−2 bk∗−1
k∗−1









︸ ︷︷ ︸

=:B

,
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(2.10) J2(s) :=








µk∗ + a(s) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 µm + a(s)







,

and U1(s) := (û1(s), . . . , ûk∗−1(s))
⊤, U2(s) := (ûk∗(s), . . . , ûm(s))⊤, F1 := diag(

√
λ1, . . . ,

√
λk∗−1),

F2 := diag(
√
λk∗ , . . . ,

√
λm), W1(s) = (W1(s), . . . ,Wk∗−1(s))

⊤, W2(s) = (Wk∗(s), . . . ,Wm(s))⊤.
Let the following assumptions hold throughout the rest of the paper:

Assumptions 2.1.

(a) Ji,j ∈ C1([0, t],R), for all i, j = 1, ...,m and the derivatives are uniformly bounded by a constant
M .

(b) a− < a(s) < a+ for all s ∈ [0, t] where a−, a+ ∈ R.
(c) µ1 + a+ + ‖B‖op =: −κ < 0.
(d) λk 6= 0 for all k = 1, ...,m.

The last three assumptions are needed to prove the existence of a non-degenerate neighbourhood
within which sample paths are going to stay for long times.

Note that, since Q is a trace class operator there exist c > 0 and p > 3 such that k2

λk
≥ ckp. In

the following we only assume that p > 1 and we expect that the result generalizes to cylindrical Q-
Wiener processes which fulfill this growth condition. In particular, this relation between the eigenvalues
of J2 (which grow like |µk| ∼ k2) and the eigenvalues of the covariance operator Q (which decrease
monotonically to zero as k → ∞) guarantees that the deterministic decay towards zero of the drift
term dominates the noisy fluctuations in the higher modes. Furthermore, note that the deterministicaly
attracting slow manifold of (2.8) is given by Cε = {Um(s) = 0} for s ∈ [0, t] since Um(s) ≡ 0 solves
the problem without noise for any ε = 0 and any s ∈ [0, t], and the sign conditions we assumed above
guarantee that Cε is attracting.

3. Exponential sample path estimates

3.1. Main result and proof strategy. We consider equation (2.3) on the spatial interval [0, L], L > 0,
and time interval [0, t], where we assume

t = Λε,

together with homogeneous Dirichlet boundary conditions and initial condition u(0) = 0, as discussed
in Section 2.1. Let u be the mild solution to this problem and let Um be the m-dimensional Galerkin
approximation, as discussed in Section 2.2. Furthermore, let Assumption 2.1 hold. It is helpful to
introduce some notation to deal with various constants appearing in our subsequent arguments. Let

(3.1) C1 := C1(γ) := C
κ+ β

(k∗ − 1)3σ2λ1
exp (2Λ(κ− κ− 2β)) exp

(

−2γ

κ
(κ+ β)

)

,

where γ > 0 is chosen arbitrarily, C, β are constants depending on the particular form of B and κ, κ are
lower and upper bounds on the eigenvalues of J1(s) (see Section 3.3 for details). Likewise, for arbitrary
γ̃ > 0 we define

(3.2) C2 = C2(γ̃) :=
cc̃ exp (−2γ̃)π2

σ2L2
,

where c > 0 is the constant such that k2

λk
≥ ckp, and c̃ > 0 is chosen such that |µk + a+| ≥ c̃|µk|. We

also introduce the notation

(3.3) H∗(k) :=
ln
(

2
⌈
Λ
γ̃ |a− + µk|

⌉)

C2kp
,
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and we note that, defining Hm
∗ := H∗(k∗ +m) for m ∈ N, we have

∑∞
m=0H

m
∗ < ∞. Furthermore, we

define

(3.4) η∗ :=
∞∑

m=0

Hm
∗ +

2p

(p2 − 1)C2
+ 2δ,

where δ is chosen such that 1
C2δ

≥ 1, and

(3.5) ζ∗ :=
ln (2⌈Λκ/γ⌉)

C1
,

as well as

(3.6) ξ∗ :=
1

C2δ

exp (−C2k
p
∗δ)

1− exp
(

−C2pk
p−1
∗ δ

) .

Our main result then reads as follows:

Theorem 3.1. Let γ, γ̃ > 0 be arbitrary. For H ≥ η∗ + ζ∗ we have

P

(

sup
0≤s≤t

‖u(s)‖2 ≥ H

)

≤ exp (−C1 (H − η∗ − ζ∗))

+ ξ∗C1
| exp (−C1(H − η∗ − ζ∗))− exp (−C2k

p
∗(H − η∗ − ζ∗)) |

|C1 − C2k
p
∗|

,(3.7)

where ‖ · ‖ = ‖ · ‖L2([0,L]) and all the constants are defined as above. The case C1 = C2k
p
∗ is to be

understood in the sense of taking the derivative.

Theorem 3.1 tells us the following: For H large enough, the probability that the solution to equa-
tion (2.3) deviates more than H from the deterministic slow manifold within an ε-small time interval,
is exponentially small in H. The larger p, i.e., the faster the eigenvalues of the covariance operator Q
decrease, the smaller is the lower bound on H for which we can guarantee this exponential decay.

Let us briefly outline the strategy of the proof. Note that by Parseval’s identity we have for H > 0

P

(

sup
0≤s≤t

‖u(s)‖2 ≥ H

)

= P

(

sup
0≤s≤t

∞∑

k=1

|ûk(s)|2 ≥ H

)

.(3.8)

For readability we write uk(s) for ûk(s) from now on. The main idea to prove Theorem 3.1 is to split
the infinite sum in (3.8) into two parts, one containing the first k∗ − 1 components and the other one
containing the last m − k∗ + 1 components, where we let m tend to ∞. We call the first sum the
finite-frequency part and the second sum the high-frequency part. The two parts can be estimated as
follows:

Proposition 3.2. For arbitrary γ > 0 we have for H ≥ ζ∗

(3.9) P

(

sup
0≤s≤t

k∗−1∑

k=1

|uk(s)|2 ≥ H

)

≤ exp (−C1(H − ζ∗)) .

Proposition 3.3. For arbitrary γ̃ > 0 we have for H ≥ η∗

(3.10) P





∞∑

k=k∗

sup
0≤s≤t

|uk(s)|2 ≥ H



 ≤ ξ∗ exp (−C2k
p
∗(H − η∗)) .

Proposition 3.2 will be proved in Section 3.3. In order to prove Proposition 3.3 we will use one-
dimensional estimates for each component, which we will then combine iteratively, see Section 3.4.
Finally, to prove Theorem 3.1 we will concatenate the estimates for the finite-frequency part and the
high-frequency part, i.e., Propositions 3.2 and 3.3, see Section 3.5.
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Remark 3.4. Note that similar estimates for one-dimensional and (finite) multi-dimensional SODE
systems have been proved in [4]. We use a similar strategy for the proofs, however, in a way which is
tailor-made for the linear setting at hand.

3.2. Auxiliary results. Before proving Propositions 3.2, 3.3 and Theorem 3.1 we provide a couple of
auxiliary results. The following proposition will become crucial for obtaining estimates on the distribu-
tion of the sum of two random variables when exponential estimates for each individual random variable
are given.

Proposition 3.5. Let X, Y be two independent non-negative random variables on a probability space
(Ω,F ,P). Assume that the following two estimates hold

P (X ≥ H) ≤
n∑

i=0

ξX(i) exp (−κX(i)(H − ηX)) , for all H ≥ ηX ,(3.11a)

P (Y ≥ H) ≤ ξY exp (−κY (H − ηY )) , for all H ≥ ηY ,(3.11b)

where n ∈ N, ξX(i), ξY , κX(i), κY > 0, ηX , ηY ≥ 0 for i = 0, . . . , n. Then, for H ≥ ηX + ηY we have

P (X + Y ≥ H) ≤ P (Y ≥ H − ηX)

(

1−
n∑

i=0

ξX(i)

)

+
n∑

i=0

ξX(i) exp (−κX(i)(H − ηX − ηY ))

−
n∑

i=0

ξY ξX(i)κX(i)
exp (−κX(i)(H − ηX − ηY ))− exp (−κY (H − ηX − ηY ))

κX(i)− κY
,(3.12)

where the case κX(i) = κY for an i ∈ {1, . . . , n} is to be understood in the sense of taking the derivative.

Proof. For simplicity we assume κX(i) 6= κY for all i ∈ {1, . . . , n} in what follows. Further assume
H ≥ ηX + ηY . As X and Y are independent we can use the convolution formula for the cumulative
distribution function of the sum of two independent random variables. Thus

P (X + Y ≥ H) = 1− P (X + Y < H)

= 1−
∫ H

0

(
d

dH1
(1− P (Y ≥ H1))

)

(1− P (X ≥ H −H1)) dH1

= 1 +

∫ H

0

d

dH1
P (Y ≥ H1) dH1 −

∫ H

0

(
d

dH1
P (Y ≥ H1)

)

P (X ≥ H −H1) dH1

= P (Y ≥ H)−
∫ H

0

(
d

dH1
P (Y ≥ H1)

)

P (X ≥ H −H1) dH1

≤ P (Y ≥ H)−
∫ H−ηX

0

(
d

dH1
P (Y ≥ H1)

)[ n∑

i=0

ξX(i) exp (−κX(i)(H −H1 − ηX))

]

dH1

−
∫ H

H−ηX

d

dH1
P (Y ≥ H1) dH1

= P (Y ≥ H − ηX)−
∫ H−ηX

0

(
d

dH1
P (Y ≥ H1)

)[ n∑

i=0

ξX(i) exp (−κX(i)(H −H1 − ηX))

]

dH1

︸ ︷︷ ︸

=:I1

,

(3.13)
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where we have used that d
dH1

P (Y ≥ H1) ≤ 0 and (3.11a). With integration by parts and by applying

equation (3.11b), we can further estimate I1

I1 = −
[

P (Y ≥ H1)
n∑

i=0

ξX(i) exp (−κX(i)(H −H1 − ηX))

]H−ηX

H1=0

+

∫ H−ηX

0
P (Y ≥ H1)

[
n∑

i=0

ξX(i)κX(i) exp (−κX(i)(H −H1 − ηX))

]

dH1

≤ −P (Y ≥ H − ηX)
n∑

i=0

ξX(i) +
n∑

i=0

ξX(i) exp (−κX(i)(H − ηX))

+

∫ nY

0

n∑

i=0

ξX(i)κX(i) exp (−κX(i)(H −H1 − ηX)) dH1

+

∫ H−ηX

ηY

ξY exp (−κY (H1 − ηY ))

[
n∑

i=0

ξX(i)κX(i) exp (−κX(i)(H −H1 − ηX))

]

dH1

︸ ︷︷ ︸

=:I2

= −P (Y ≥ H − ηX)
n∑

i=0

ξX(i) +
n∑

i=0

ξX(i) exp (−κX(i)(H − ηX − ηY )) + I2.

Now, for I2 we calculate

I2 =
n∑

i=0

ξY ξX(i)κX(i) exp (κY ηY − κX(i)H + κX(i)ηX)

∫ H−ηX

ηY

exp (H1(κX(i)− κY )) dH1

= −
n∑

i=0

ξY ξX(i)κX(i)
exp (−κX(i)(H − ηX − ηY ))− exp (κY (H − ηX − ηY ))

κX(i)− κY
.

Inserting I2 into I1 and estimating I1 as above in equation (3.13) concludes the proof. �

We will further need the following results for the iteration step in the high-frequency estimate.

Lemma 3.6. For n ∈ N let {xk}nk=0 be distinct non-negative real numbers. Then

n∑

i=0

n∏

m=0,m 6=i

xm
xm − xi

= 1,(3.14a)

n∑

i=0

n∏

m=0,m 6=i

1

xm − xi
= 0.(3.14b)

Proof of (3.14a). Define the auxiliary function f : R → R

f(x) :=
n∑

i=0

n∏

m=0,m 6=i

1− x/xm
1− xi/xm

.
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Then for k = 0, ..., n we have

f(xk) =
n∑

i=0

n∏

m=0,m 6=i

1− xk/xm
1− xi/xm

=

n∑

i=0,i 6=k

n∏

m=0,m 6=i

1− xk/xm
1− xi/xm

+

n∏

m=0,m 6=k

1− xk/xm
1− xk/xm

=
n∑

i=0,i 6=k





n∏

m=0,m 6=i,m 6=k

1− xk/xm
1− xi/xm




1− xk/xk
1− xi/xp
︸ ︷︷ ︸

=0

+1

= 1.

Now, f(x)− 1 is a polynomial of degree n with n+ 1 roots, i.e., f(x)− 1 ≡ 0. Hence,

1 = f(0) =
n∑

i=0

n∏

m=0,m 6=i

1

1− xi/xm
=

n∑

i=0

n∏

m=0,m 6=i

xm
xm − xi

.

Proof of (3.14b). We prove the second identity by induction. For the base case n = 1 we have

n∑

i=0

n∏

m=0,m 6=i

1

xm − xi
=

1

x1 − x0
+

1

x0 − x1
= 0.

Now, let (3.14b) hold for arbitrary but fixed n ∈ N (inductive hypothesis). Then

n+1∑

i=0

n+1∏

m=0,m 6=i

1

xm − xi
=

1

xn+1 − xn

[
n+1∑

i=0

xn+1 − xi
∏n+1

m=0,m 6=i(xm − xi)
−

n+1∑

i=0

xn − xi
∏n+1

m=0,m 6=i(xm − xi)

]

=
1

xn+1 − xn





n∑

i=0

1
∏n

m=0,m 6=i(xm − xi)
−

n+1∑

i=0,i 6=n

1
∏n+1

m=0,m 6=i,m 6=n(xm − xi)





=
1

xn+1 − xn
[0− 0] = 0,

where we have used the inductive hypothesis in the last line. �

Corollary 3.7. For k∗ ∈ N, a, b, c ∈ N let us define the following quotient

(3.15) Qa
b,c :=

(k∗ + a)p

(k∗ + b)p − (k∗ + c)p
,

which will appear in the estimate for the high-frequency part. For n ∈ N we have

n∑

i=0

n∏

n=0,m 6=i

Qm
m,i = 1,(3.16a)

n+1∑

i=0

n+1∏

m=0,m 6=i

Q0
m,i = 0,(3.16b)

1−Qi
i,n+1 = Qn+1

n+1,i,(3.16c)

n∑

i=0





n∏

m=0,m 6=i

Qm
m,i



Qi
i,n+1 =

n∏

m=0

Qm
m,n+1.(3.16d)
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Proof. Identities (3.16a) and (3.16b) follow directly from Lemma 3.6. The third identity (3.16c) can be
easily verified by direct calculation

1−Qi
i,n+1 =

(k∗ + i)p − (k∗ + n+ 1)p

(k∗ + i)p − (k∗ + n+ 1)p
− (k∗ + i)p

(k∗ + i)p − (k∗ + n+ 1)p
=

−(k∗ + n+ 1)p

(k∗ + i)p − (k∗ + n+ 1)p

= Qn+1
n+1,i.

Likewise, the last identity (3.16d) follows from

n∑

i=0





n∏

m=0,m 6=i

Qm
m,i



Qi
i,n+1

=
n∏

m=0

(k∗ +m)p

[

−
n∑

i=0

n+1∏

m=0,m 6=i

1

(k∗ +m)p − (k∗ + i)p

]

=
n∏

m=0

(k∗ +m)p

[

−
n+1∑

i=0

n+1∏

m=0,m 6=i

1

(k∗ +m)p − (k∗ + i)p

︸ ︷︷ ︸

=0 by (3.16b)

+
n∏

m=0

1

(k∗ +m)p − (k∗ + n+ 1)p

]

=

n∏

m=0

(k∗ +m)p

(k∗ +m)p − (k∗ + n+ 1)p
=

n∏

m=0

Qm
m,n+1.

�

3.3. Finite-frequency estimate.

Proof of Proposition 3.2. We begin by estimating the eigenvalues of the matrix J1(s). Let ψ(s) be an
eigenvalue of J1(s) = diag(µ1, . . . , µk∗−1) + a(s)idk∗−1 + B with corresponding normed eigenvector w
(‖w‖2 = 1), i.e. J1(s)w = ψ(s)w. We have

‖B‖op ≥ ‖Bw‖2
= ‖diag(ψ(s)− a(s)− µ1, . . . , ψ(s)− a(s)− µk∗−1)w‖2
≥ min

k=1,...,k∗−1
|ψ(s)− a(s)− µk|.

This estimate yields an upper and a lower bound on ψ(s):

ψ(s) ≤ a(s) + max
k=1,...,k∗−1

µk + ‖B‖op ≤ a+ + µ1 + ‖B‖op =: −κ,

ψ(s) ≥ a(s) + min
k=1,...,k∗−1

µk − ‖B‖op ≥ a− + µk∗−1 − ‖B‖op =: −κ,

with 0 < κ < κ (cf. Assumption 2.1 (c)). Now, let U(s) be the solution to the k∗ − 1-dimensional
system

U1(s) =
1

ε
J1(s)U1(s) +

σ√
ε
F1 dW1(s).

Using Duhamel’s principle the solution can be represented as follows

U1(s) =
σ√
ε

∫ s

0
exp

(
1

ε
α(s, τ)

)

F1 dW1(τ),

with α(s, τ) :=
∫ s
τ J1(r) dr. Furthermore, define α(s) := α(s, 0). Since we have an upper and a lower

bound for the eigenvalues of J1(s), we can obtain the following estimates

(3.17)

∥
∥
∥
∥
exp

(
1

ε
α(s)

)∥
∥
∥
∥
op

≤ C exp
(

−s
ε
(κ− β)

)

,
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(3.18)

(

exp

(

−1

ε
α(τ)

))

i,j

≤ C exp
(τ

ε
(κ+ β)

)

,

where the constant β ≥ 0 comes from the polynomial part appearing in non-diagonalizable matrices
and C,C are time-independent constants as well.

Let us now introduce a partition of the time interval [0, t] by 0 = s0 < s1 < . . . < sN = t with step

size sj+1 − sj = εγ
κ and N =

⌈
tκ
εγ

⌉

, for some γ > 0. By applying the Bernstein inequality and using

(3.17), (3.18), we can estimate the probability in question as follows

P

(

sup
0≤s≤t

k∗−1∑

k=1

|uk(s)|2 ≥ H

)

≤
N−1∑

j=0

P

(

sup
sj≤s≤sj+1

∥
∥
∥
∥

σ√
ε

∫ s

0
exp

(
1

ε
α(s, τ)

)

F1 dW1(τ)

∥
∥
∥
∥

2

2

≥ H

)

≤
N−1∑

j=0

P

(

sup
sj≤s≤sj+1

(k∗ − 1)2σ2

ε
max

1≤k≤k∗−1
λk

∥
∥
∥
∥
exp

(
1

ε
α(s)

)∥
∥
∥
∥

2

op

∥
∥
∥
∥

∫ s

0
exp

(

−1

ε
α(τ)

)

ek dWk(τ)

∥
∥
∥
∥

2

2

≥ H

)

≤
N−1∑

j=0

P

(

sup
sj≤s≤sj+1

(k∗ − 1)3σ2λ1C
2

ε exp
(
2
εs(κ− β)

) max
1≤k,ℓ≤k∗−1

∣
∣
∣
∣

∫ s

0

(

exp

(

−1

ε
α(τ)

)

ek

)

ℓ

dWk(τ)

∣
∣
∣
∣

2

≥ H

)

≤
N−1∑

j=0

max
1≤k,ℓ≤k∗−1

P

(

sup
sj≤s≤sj+1

∣
∣
∣
∣

∫ s

0

(

exp

(

−1

ε
α(τ)

)

ek

)

ℓ

dWk(τ)

∣
∣
∣
∣

2

≥ Hε exp
(
2
εsj(κ− β)

)

(k∗ − 1)3σ2λ1C
2

)

≤
N−1∑

j=0

max
1≤k,ℓ≤k∗−1

2 exp

(

− Hε

(k∗ − 1)3σ2λ1C
2 exp

(
2

ε
sj(κ− β)

)
1

2
∫ sj+1

0

(
exp

(
−1

εα(τ)
)
ek
)2

ℓ
dτ

)

≤
N−1∑

j=0

2 exp

(

−C Hε

(k∗ − 1)3σ2λ1
exp

(
2

ε
sj(κ− β)

)
1

2
∫ sj+1

0 exp
(
2τ
ε (κ+ β)

)
dτ

)

≤
N−1∑

j=0

2 exp

(

−C H(κ+ β)

(k∗ − 1)3σ2λ1
exp

(
2

ε
sj(κ− κ− 2β)

)

exp

(

−2γ

κ
(κ+ β)

))

≤ 2

⌈
Λκ

γ

⌉

exp

(

−C H(κ+ β)

(k∗ − 1)3σ2λ1
exp (2Λ(κ− κ− 2β)) exp

(

−2γ

κ
(κ+ β)

))

= exp (−C1 (H − ζ∗)) ,

where C = 1

C2C
2 and C1, ζ∗ are defined in (3.1) and (3.5). �

3.4. High-frequency estimate. To obtain an estimate for the high-frequency part we are going to
derive estimates for each component uk(s) with k ≥ k∗ and then concatenate them via Proposition 3.5.
First note that we have the following estimate for one single mode

Lemma 3.8. For all k ≥ k∗ we have

P

(

sup
0≤s≤t

|uk(s)|2 ≥ H

)

≤ exp (−C2k
p(H −H∗(k))) ,(3.19)

where C2, H∗(k) are defined in (3.2) and (3.3).

Proof. Let k ≥ k∗, the equation for the k-th component reads

(3.20) duk(s) =
1

ε
(µk + a(s))uk(s) ds+

σ√
ε

√

λk dWk(s),
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and using Duhamel’s principle its solution can be represented as

(3.21) uk(s) =
σ√
ε

∫ s

0
exp

(
αk(s, τ)

ε

)
√

λk dWk(τ),

with αk(s, τ) =
∫ s
τ (µk + a(r)) dr. We have the following estimate

∫ s

0
exp

(
2αk(s, τ)

ε

)

dτ ≤
∫ s

0
exp

(
2

ε

∫ s

τ
(µk + a+) dr

)

dτ =

∫ s

0
exp

(
2

ε
(µk + a+)τ

)

dτ

=
ε

2

1

µk + a+

[

exp

(
1

ε
(µk + a+)s

)

− 1

]

≤ ε

2|µk + a+|
.(3.22)

Now fix γ̃ > 0 and we introduce a k-dependent partition 0 = sk0 < sk1 < . . . < skN = t of [0, t] = [0, εΛ]

with −αk(s
k
j+1, s

k
j ) = εγ̃ for 0 ≤ j < Nk =

⌈
|αk(t)|
εγ̃

⌉

. Then, using the Bernstein inequality and estimate

(3.22), we obtain

P

(

sup
0≤s≤t

|uk(s)|2 ≥ H

)

= P

(

sup
0≤s≤t

∣
∣
∣
∣

σ√
ε

∫ s

0
exp

(
αk(s, τ)

ε

)
√

λk dWk(τ)

∣
∣
∣
∣
≥

√
H

)

≤
Nk−1
∑

j=0

P



 sup
skj≤s≤skj+1

∣
∣
∣
∣

∫ s

0
exp

(

−αk(τ)

ε

)

dWk(τ)

∣
∣
∣
∣
≥

√
Hε

σ
√
λk

inf
skj≤s≤skj+1

exp

(

−αk(s)

ε

)




≤
Nk−1
∑

j=0

2 exp



− Hε

σ2λk

infskj≤s≤skj+1
exp (−2αk(s)/ε)

2
∫ skj+1

0 exp (−2αk(τ)/ε) dτ





≤
Nk−1
∑

j=0

2 exp




− Hε

2σ2λk

exp
(

2αk(s
k
j+1, s

k
j )/ε

)

∫ skj+1

0 exp
(

2αk(s
k
j+1, τ)/ε

)

dτ






≤
Nk−1
∑

j=0

2 exp

(

− Hε

2σ2λk
exp (−2γ̃)

2|µk + a+|
ε

)

≤ 2

⌈ |αk(t)|
εγ̃

⌉

exp

(

−H

σ2
exp (−2γ̃)

c̃π2

L2
ckp
)

= exp (−C2k
p(H −H∗(k)))

where C2 and H∗(k) have been defined in (3.2) and (3.3). �

We are now going to prove an estimate on a finite sum of components with index k ≥ k∗. This will
be used to prove Proposition 3.3 by finding a bound independent of the number of addends n.

Proposition 3.9. Let n ∈ N. For H ≥
∑n

m=0H
m
∗ we have

P

(
n∑

i=0

sup
0≤s≤t

|uk∗+i(s)|2 ≥ H

)

≤
n∑

i=0



exp

(

−C2(k∗ + i)p

(

H −
n∑

m=0

Hm
∗

))
n∏

m=0,m 6=i

Qm
m,i



 ,(3.23)

where Qm
m,i has been defined in Corollary 3.7.

Proof. We prove the statement inductively. The base case n = 0 directly follows from Lemma 3.8. Now,
let (3.23) hold for arbitrary but fixed n (inductive hypothesis). Note that

∑n
i=0 sup0≤s≤t |uk∗+i(s)|2 and

sup0≤s≤t |uk∗+n+1(s)|2 are independent. Furthermore, by the inductive hypothesis we have for the sum
the estimate given in equation (3.23) and for the (k∗ + n+ 1)th component we have by Lemma 3.8

P

(

sup
0≤s≤t

|uk∗+n+1(s)|2 ≥ H

)

≤ exp
(
−C2(k∗ + n+ 1)p(H −Hn+1

∗ )
)
.(3.24)

Now, applying Proposition 3.5 with ξX(i) =
∏n

m=0,m 6=iQ
m
m,i, ξY = 1, κX(i) = C2(k∗+ i)p, κY = C2(k∗+

n+1)p, ηX =
∑n

m=0H
m
∗ and ηY = Hn+1

∗ , where i = 0...n, yields forH ≥∑n
m=0H

m
∗ +Hn+1

∗ =
∑n+1

m=0H
m
∗
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P

(
n+1∑

i=0

sup
0≤s≤t

|uk∗+i(s)|2 ≥ H

)

= P

(
n∑

i=0

sup
0≤s≤t

|uk∗+i(s)|2 + sup
0≤s≤t

|uk∗+n+1(s)|2 ≥ H

)

≤ P

(

sup
0≤s≤t

|uk∗+n+1(s)|2 ≥ H −H∗

)


1−
n∑

i=0

n∏

m=0,m 6=i

Qm
m,i





︸ ︷︷ ︸

=0 by (3.16a)

+ exp

(

−C2(k∗ + n+ 1)p

(

H −
n∑

m=0

Hm
∗ −Hn+1

∗

))
n∑

i=0

∏n
m=0,m 6=iQ

m
m,iC2(k∗ + i)p

C2(k∗ + i)p − C2(k∗ + n+ 1)p

+

n∑

i=0

exp

(

−C2(k∗ + i)p

(

H −
n∑

m=0

Hm
∗ −Hn+1

∗

))



n∏

m=0,m 6=i

Qm
m,i −

∏n
m=0,m 6=iQ

m
m,iC2(k∗ + i)p

C2(k∗ + i)p − C2(k∗ + n+ 1)p





= exp

(

−C2(k∗ + n+ 1)p

(

H −
n+1∑

m=0

Hm
∗

))
n∑

i=0

n∏

m=0,m 6=i

Qm
m,iQ

i
i,n+1

︸ ︷︷ ︸

=
∏n

m=0
Qm

m,n+1
by (3.16d)

+
n∑

i=0

exp

(

−C2(k∗ + i)p

(

H −
n+1∑

m=0

Hm
∗

))
n∏

m=0,m 6=i

Qm
m,i

(
1−Qi

i,n+1

)

︸ ︷︷ ︸

=Qn+1

n+1,i by (3.16c)

= exp

(

−C2(k∗ + n+ 1)p

(

H −
n+1∑

m=0

Hm
∗

))
n+1∏

m=0,m 6=n+1

Qm
m,n+1

+
n∑

i=0

exp

(

−C2(k∗ + i)p

(

H −
n+1∑

m=0

Hm
∗

))
n+1∏

m=0,m 6=i

Qm
m,i

=
n+1∑

i=0

exp

(

−C2(k∗ + i)p

(

H −
n+1∑

m=0

Hm
∗

))
n+1∏

m=0,m 6=i

Qm
m,i,

where we have used results of Corollary 3.7. �

Proof of Proposition 3.3. Applying Proposition 3.9 yields

P

(
n∑

i=0

sup
0≤s≤t

|uk∗+i(s)|2 ≥ H

)

≤ exp (−C2k
p
∗H)

n∑

i=0



exp

(

−C2[(k∗ + i)p − kp∗]H + C2(k∗ + i)p
n∑

m=0

Hm
∗

)
n∏

m=0,m 6=i

Qm
m,i



 .

Note that
∏n

m=0,m 6=iQ
m
m,i =

∏i−1
m=0Q

m
m,i

∏n
m=i+1Q

m
m,i = (−1)i

∏i−1
m=0Q

m
i,m

∏n
m=i+1Q

m
m,i. By monotone

convergence we have

P





∞∑

k=k∗

sup
0≤s≤t

|uk(s)|2 ≥ H



 ≤ exp (−C2k
p
∗H) lim

n→∞

n∑

i=0

[
(−1)isni

]
,(3.25)

where

sni = exp

(

−C2[(k∗ + i)p − kp∗]H + C2(k∗ + i)p
n∑

m=0

Hm
∗

)
i−1∏

m=0

Qm
i,m

n∏

m=i+1

Qm
m,i ≥ 0.
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In what follows, we derive an upper bound for sni being uniform in n

i−1∏

m=0

Qm
i,m = exp

(

−
i−1∑

m=0

ln

((
k∗ + i

k∗ +m

)p(

1−
(
k∗ +m

k∗ + i

)p))
)

≤ exp





∫ i

0
ln




1

1−
(
k∗+m
k∗+i

)p



 dm



 = exp

(

−(k∗ + i)

∫ 1

k∗/(k∗+i)
ln(1− xp) dx

)

≤ exp

(

(k∗ + i)

∫ 1

k∗/(k∗+i)
xp dx

)

= exp

(

k∗ + i

p+ 1
− kp+1

∗
(p+ 1)(k∗ + i)p

)

(3.26)

and

n∏

m=i+1

Qm
m,i =

n∏

m=i+1

(

1 +
(k∗ + i)p

(k∗ +m)p − (k∗ + i)p

)

≤ exp

(
n∑

m=1

ln

(

1 +

(
k∗ + i

m

)p)
)

= exp

(

ln (1 + (k∗ + i)p) +
n∑

m=2

ln

(

1 +

(
k∗ + i

m

)p)
)

≤ (1 + (k∗ + i)p) exp

(∫ n

1
ln

(

1 +

(
k∗ + i

m

)p)

dm

)

≤ (1 + (k∗ + i)p) exp

(

(k∗ + i)

∫ n/(k∗+i)

1/(k∗+i)

1

yp
dy

)

= (1 + (k∗ + i)p) exp

(
1

1− p

(
(k∗ + i)p

np−1
− (k∗ + i)p

))

≤ (1 + (k∗ + i)p) exp

(
1

p− 1
(k∗ + i)p

)

for all n ≥ 1.(3.27)

Now, let δ > 0 such that 1
C2δ

≥ 1. Then

(3.28) (1 + (k∗ + i)p) ≤ 1

C2δ
exp (C2δ(k∗ + i)p) .
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By inserting the estimates (3.26) and (3.27) into sni and applying (3.28) we obtain uniformly in n ≥ 0

sni ≤ exp

(

−C2[(k∗ + i)p − kp∗]H + C2(k∗ + i)p
∞∑

m=0

Hm
∗

)

× exp

(

k∗ + i

p+ 1
− kp+1

∗
(p+ 1)(k∗ + i)p

)

(1 + (k∗ + i)p) exp

(

(k∗ + i)p
1

p− 1

)

≤ exp

(

−C2[(k∗ + i)p − kp∗]H + C2(k∗ + i)p
∞∑

m=0

Hm
∗

)

× 1

C2δ
exp (C2δ(k∗ + i)p) exp

(

(k∗ + i)p

p− 1
+
k∗ + i

p+ 1
− kp+1

∗
(p+ 1)(k∗ + i)p

)

≤ 1

C2δ
exp (C2k

p
∗H) exp

(

− kp+1
∗

(p+ 1)(k∗ + i)p

)

× exp

(

−C2(k∗ + i)p

(

H −
∞∑

m=0

Hm
∗ − 1

(p− 1)C2
− 1

(p+ 1)C2
− δ

))

≤ 1

C2δ
exp

(

C2k
p
∗

( ∞∑

m=0

Hm
∗ +

1

(p− 1)C2
+

1

(p+ 1)C2
+ δ

))

× exp

(

−C2pk
p−1
∗ i

(

H −
∞∑

m=0

Hm
∗ − 1

(p− 1)C2
− 1

(p+ 1)C2
− δ

))

,

where we have used (k∗ + i)p ≥ kp∗ + pkp−1
∗ i in the last line. Consequently, we get for H ≥ η∗

lim
n→∞

n∑

i=0

sni ≤ 1

C2δ
exp

(

C2k
p
∗

( ∞∑

m=0

Hm
∗ +

1

(p− 1)C2
+

1

(p+ 1)C2
+ δ

)) ∞∑

i=0

exp
(
−C2pk

p−1
∗ iδ

)

=
1

C2δ
exp

(

C2k
p
∗

( ∞∑

m=0

Hm
∗ +

2p

(p2 − 1)C2
+ δ

))

1

1− exp
(

−C2pk
p−1
∗ δ

)

=: ξ∗ exp (C2k
p
∗η∗) ,

where ξ∗ and η∗ are defined in (3.6) and (3.4). Together with (3.25) this completes the proof. �

3.5. Combining finite- and high-frequency estimates.

Proof of Theorem 3.1. As outlined before, we split the sum of the components into the finite- and the
high-frequency part and obtain

P

(

sup
0≤s≤t

‖u(s)‖2 ≥ H

)

= P

(

sup
0≤s≤t

∞∑

k=1

|uk(s)|2 ≥ H

)

≤ P



 sup
0≤s≤t

k∗−1∑

k=1

|uk(s)|2 + sup
0≤s≤t

∞∑

k=k∗

|uk(s)|2 ≥ H





≤ P



 sup
0≤s≤t

k∗−1∑

k=1

|uk(s)|2 +
∞∑

k=k∗

sup
0≤s≤t

|uk(s)|2 ≥ H



 .(3.29)
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Now using Proposition 3.2 and 3.3 we can once more apply Proposition 3.5 with n = 0, ξX(0) = 1,
ξY = ξ∗, κX(0) = C1, κY = C2k

p
∗, ηX = ζ∗, ηY = η∗, and we obtain for H ≥ η∗ + ζ∗

P

(

sup
0≤s≤t

‖u(s)‖2 ≥ H

)

≤ exp (−C1 (H − η∗ − ζ∗))

− ξ∗C1
exp (−C1(H − η∗ − ζ∗))− exp (−C2k

p
∗(H − η∗ − ζ∗))

C1 − C2k
p
∗

,

where the case C1 = C2k
p
∗ is to be understood in the sense of derivatives. �

4. Summary & Outlook

In our main result, Theorem 3.1, we have established that it is possible in a simplified setting to extend
finite-dimensional fast-slow SODE bounds [4] near normally hyperbolic slow manifolds to the infinite-
dimensional SPDE setting. In particular we have obtained exponential bounds on the probability to stay
near a slow manifold. Our proof has shown that it is possible to naturally extend finite-dimensional
results to the SPDE (2.3) using a splitting approach into finitely many (‘low’) frequency modes as
stated in Proposition 3.2 and infinitely many (‘high’) frequency modes as covered by Proposition 3.3.
Furthermore, the key idea is to make use of the growth relation between the eigenvalues coming form
the deterministic drift term and the eigenvalues of the covariance operator of the noise. The splitting
and the iterative treatment of the high-frequency modes are the key steps in the proof. Those steps
could be directly converted into a numerical method. Indeed, just keeping the low-frequency modes
corresponds to a Galerkin truncation.

Yet, our approach is only a first step towards providing a detailed theory of multiple time scale
SPDEs. There are a few direct possible generalizations. For example, it is evident that the decay in the
eigenvalues of the operator A and the spectrum of Q are the key objects, which have to be balanced,
to obtain exponential error estimates. Hence, we can allow for more general linear operators A with
suitable spectra. Furthermore, for suitably regular multiplicative noise in SPDEs considered on finite
time scales near a slow manifold, one may often locally estimate the noise near the slow manifold by
additive noise terms.

Another next natural step would be to allow linear couplings between the fast and the slow variable,
i.e., systems of the form (where we set B ≡ 0 here for notational convenience)

(4.1)

{
du = 1

ε [Au+ p1u+ p2v] ds+ σ√
ε
dWQ,

dv = [p3u+ p4v] ds,

with parameters p1, p2, p3, p4 ∈ R, one obtains in the Galerkin approximation 2 × 2-blocks along the
diagonal

(4.2)










dû1(s)
dv̂1(s)

...
dûm(s)
dv̂m(s)










=
1

ε
















µ1 + p1 p2 0 . . . 0 0 0
p3 p4 0 . . . 0 0 0

0 0
. . . 0 0 0

...
...

. . .
...

...

0 0 0
. . . 0 0

0 0 0 . . . 0 µm + p1 p2
0 0 0 . . . 0 p3 p4

























û1(s)
v̂1(s)
...

ûm(s)
v̂m(s)










ds+
σ√
ε










√
λ1dW1

0
...√

λmdWm

0










.

The eigenvalues of this block-structured matrix are easily computed. Under certain assumptions on
the eigenvalues and with an iterative scheme similar to the one presented here, we expect to obtain
exponential bounds on the sample paths as well. In addition, it is natural to conjecture that suitable
regular perturbations of order O(ε) of the coefficients are not going to alter the results presented here.

However, there are also several extensions, which are substantially more technical. Dealing with
nonlinear terms, introducing a general slow SODE including nonlinear terms for g and G, as well as
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patching shorter time intervals to time intervals of order O(1) are well-studied for SODEs in [4]. To lift
these SODE results to SPDEs is going to require a careful and detailed analysis in future work.

One might also ask, which other possible ways may exist to prove results about concentration of
sample paths for fast-slow SPDEs. If we drop the idea to aim for a natural generalizations of the SODE
setting, we conjecture that it could be possible to deal with the high-frequency modes more implicitly
using Fernique’s Theorem [10]. This would provide less explicit estimates, yet potentially yield a shorter
proof. Hence, it would be a classical complementary alternative to our iterative scheme. In addition,
one could also think about different function space settings such as weighted Sobolev spaces [5], more
general abstract Banach spaces [23], or even lifting the results immediately to the functional setting of
regularity structures [15]. Yet, these generalizations are far beyond our current setting and are likely to
remain challenging long-term open problems.
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